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Generalized eikonal equation in excitable media
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Numerical simulations show that, in excitable media, the standard eikonal equation describing the depen-
dence of a wave front’s local velocity on its curvature fails badly in the presence of significant dispersion
@Pertsovet al. Phys. Rev. Lett.78, 2656 ~1997!#. Here we derive a corrected eikonal equation, valid in an
unrestricted frequency range, which includes highly dispersive conditions. The derivation, which uses a finite-
renormalization technique, is applied to diffusion-reaction equations with generic reactivity functions and two
diffusivities of arbitrary ratio. In the important case of equal diffusivitiesa, we obtain at low curvature, the
following contribution to the speed:@211(v/c)(]c/]v)#(a/r ), where 1/r is the curvature,v is the fre-
quency, andc5c(v) is the speed of a plane wave with that frequency. In the single-diffusivity case there is
a further contribution (e/c)(]c/]e)(a/r ), wheree is the ratio of time scales for diffusing and nondiffusing
variables;e is not restricted to a small range. Both cases yield excellent agreement with numerical simulations.
Our various formulas are compared with the classical results of Zykov„Biofizika 25, 888 ~1980! @Biophysics
25, 906 ~1980!#… and of Keener@SIAM J. Appl. Math.46, 1039~1986!#. @S1063-651X~97!00706-X#

PACS number~s!: 82.40.Ck
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INTRODUCTION

Reaction-diffusion systems have been of interest fo
long time because of the rich variety of nonlinear wave p
nomena that they support. For example, excitable media s
as cardiac tissue and Belousov-Zhabotinsky reagents
been intensively studied experimentally, analytically, a
computationally with reference to wave propagation, w
particular attention to the local speed of the waves. Amo
the many factors that determine speed, the curvature of
wave front plays a special role. One reason is that, with o
a moderate number of simplifying assumptions, we can m
definite predictions for the speedC in terms of the curvature
1/r . Another reason is that the local value ofC is related to
physiological and chemical observations more directly th
many other parameters@1–16#.

More than a decade ago, a formula for the propaga
speed of a diffusion-reaction wave in terms of its curvat
was derived by Zykov@17# in the context of the FitzHugh
Nagumo model with a single diffusion coefficient. His ana
sis assumed a low-frequency limit, i.e., isolated puls
thereby eliminating dispersion effects. Furthermore, the r
e between the short- and long-time scales of the model
taken to be very small, implying wide activation pulses
space or, under a suitable scale change, pulses with s
fronts. ~We refer to these conditions as Zykov’s limit.! For
small curvature, his eikonal equation reads

C5c2
a

r
, ~1!

wherea is the diffusivity of the medium and 1/r is the cur-
vature of the wave front. This equation has been widely u
in the literature, for example, in the kinematic theory of s
rals @18,19#. It is important, however, to recognize that E
~1! can be far from satisfied in real life. In particular, und
conditions of high dispersion, the curvature term in Eq.~1!
551063-651X/97/55~6!/7656~6!/$10.00
a
-
ch
ve
d

g
he
ly
e

n

n
e

s,
io
s

arp

d
-

can be wrong by a factor of 2 or more@20#. In what follows
we apply a different analytic method~finite renormalization
@21#! to the case of concentric circular waves~‘‘target pat-
terns’’!. We obtain the speed-curvature relation for para
eter ranges not covered in earlier research: Dispersio
treated exactly and explicitly, ande need not be restricted to
a small range. We shall be dealing with an asymptotic
pansion in the curvature of the wave front. To first order
the curvature our results contain, besides thea/r term, sig-
nificant additions not found in the previous literature. T
analytic aspects of our results are contained in Eqs.~33!,
~37!, and~41! of the present paper; these formulas make
of coefficients that must be obtained from plane-wave so
tions. When tested on computer simulations, even under c
ditions of high dispersion, they account accurately for t
data; see the brief summary at the end of this article.

The model used here is an unbounded two-dimensio
FitzHugh-Nagumo-like medium in which the propagatin
variablesu,v obey the equations

] tu2a¹2u1F1~u,v !50, ~2!

] tv2ad¹2v1dF2~u,v !50, ~3!

whereF1 andF2 are generic reactivity functions;a.0 and
d.0 are constant parameters. In order thatdF2 be any de-
sired function, the form ofF2 is considered to be specifie
only after a value ofd is chosen. In the limiting cased→0
~single diffusivity! we need to replace Eq.~3! by

] tv1eF2~u,v !50, ~38!

where it is important to note that in our treatment the para
eter e is not assumed to be small. The system~2! and ~3!
with d51 is the model of choice for the Belousov
Zhabotinsky reaction@22,23#, while system~2!,~38! which
closely follows the original FitzHugh-Nagumo model, is a
plied to electric impulses in the heart muscle@22#. For
7656 © 1997 The American Physical Society
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55 7657GENERALIZED EIKONAL EQUATION IN EXCITABLE MEDIA
given d or e, we consider only such forms ofF1 andF2 as
will allow the existence of rigidly propagating period
plane-wave trains.

Our method of derivation can be outlined as follows. F
definiteness we think in terms of outward-traveling conc
tric waves whose chosen constant angular frequencyV is
independent of space and time; a circle of constantu ~and
constantv! will be referred to as an equipotential. At th
point we need to recall that periodic target patterns are
unique, except in the far zone. Such waves are in genera
self-sustaining and we therefore postulate that a small
finite disk, concentric with the origin, is periodically stimu
lated at constant frequencyV in order to produce the waves
We further assume that, sufficiently far from the origin, t
wave form~in time and space! becomes independent of th
stimulating wave form, except for its frequency. In the f
zoner→`, we define a comoving coordinate

r5E K~r !dr2Vt, ~4!

wherer is the radial coordinate andt is the time. Equation
~4! involves the indefinite integral of an as yet undetermin
functionK, which may be viewed as the local wave numb
For sufficiently larger we consider the variablesu,v to de-
pend only onr; thus time is ‘‘frozen’’ and the comoving
feature ofr is enforced. This constraint will fix the form o
K. The wave is now effectively mapped into a periodic pla
wave; the mapping process, which we refer to as finite ren
malization@21#, systematizes and expands Zykov’s origin
procedure@17#. Computing the plane-wave solution is
separate and well-understood problem, not dealt with in
present work.~A notational remark: We make considerab
use of wave numbers,k andK, and therefore curvature wil
be denoted by 1/r rather than byK, in contrast to much of
existing practice.! The case of inward-traveling waves wi
be obtainable by changing the sign ofr .

OnceK is known, we find the speed-curvature relation
following in time the location of a given equipotential la
beled byr5const. The time derivative of Eq.~4!,

K~r !
dr

dt
2V50, ~5!

gives the radial speed

C~r !5
dr

dt
5

V

K~r !
. ~6!

For r→` we must have a plane wave corresponding to f
quencyV,

K~r !→kV5const. ~7!

Hence it is reasonable to consider an expansion

K~r !5kV1
g

r
1oS 1r 2D , ~8!

whereg is a constant coefficient. From Eq.~6! we have
r
-

ot
ot
ut

d
.

e
r-
l

e

-

C~r !5cS 12
g

kVr
D1oS 1r 2D , ~9!

wherec5C(`)5V/kV is the plane-wave speed. This artic
is mostly concerned with estimates forg. We do not address
the convergence of expansions in powers of 1/r , in Eq.~8! or
in other equations further on.

II. THE METHOD OF FINITE RENORMALIZATION

In this section we concentrate on the system of equati
~2!,~3!. The alternative system~2!,~38! requires an entirely
similar technique and will be briefly discussed at the end
Sec. III. We begin by changing variables in the wave eq
tions and subsequently pass tor→`. Before making that
approximation, we must consideru andv to depend some-
what onr as well as onr. Accordingly, let the new indepen
dent coordinates be (r ,r). We set

u5ur~r!, v5v r~r!, ~10!

functions whose periodicity is

ur~r12p!5ur~r!, v r~r12p!5v r~r!, ~11!

as can be seen by adding one period tot in Eq. ~4!. The
subscript indicates the residualr dependence, negligible in
the region of interest, as we shall show by self-consisten
To the extent that the subscript may be ignored, Eqs.~10!
imply an identical temporal wave form everywhere along t
radius, apart from a location-dependent phase; in space
the recurring extrema of the wave are equal to each other
to their values in the corresponding plane wave. These eq
tions also imply that coincident equipotentials ofu and v
travel together at all times.

Inserting Eqs.~4! and~10! into Eqs.~2! and~3!, we have

FV1aSK81
K
r D Gu81aK2u91aS ] r

2u1
1

r
] ru12K] ru8D

2F150, ~12!

FV1adSK81
K
r D Gv81adK2v9

1adS ] r
2v1

1

r
] rv12K] rv8D2dF250, ~13!

where

u85
]u

]r
, v85

]v
]r

, K85
dK
dr

. ~14!

We express the residualr dependence as an asymptotic s
ries in 1/r , involving unspecified coefficientsu(1),
v (1), . . ., which depend only onr:

ur~r!5u`~r!1
1

r
u~1!~r!1

1

r 2
u~2!~r!1 • • •,

~15!

v r~r!5v`~r!1
1

r
v ~1!~r!1

1

r 2
v ~2!~r!1 • • • .
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7658 55M. WELLNER AND A. M. PERTSOV
We also use Eq.~8! for K. We then find for the] r terms in
Eq. ~12!:

] r
2u1

1

r
] ru12K] ru85~ function of r!3oS 1r 2D ,

~16!

and similarly for the] r terms in Eq.~13!. This article ad-
dresses the first correction to plane waves, meaning that
~12! and ~13! need to be enforced through order 1/r . There-
fore, these equations reduce to the ordinary differential eq
tions

FV1aSK81
K
r D Gu81aK2u92F150, ~17!

FV1adSK81
K
r D Gv81adK2v92dF250, ~18!

in which the variabler has become a numerical parame
and where we omit the subscript` that occurs in Eq.~15!. In
what follows, the system~17!,~18! will be enforced exactly
at first, in order that the method of finite renormalization m
be applied to it.

Equations~17! and ~18! are to be compared with th
plane-wave version of Eqs.~2! and ~3!, namely,

vU81ak2U 92F1~U,V!50, ~19!

vV81adk2V 92dF2~U,V!50, ~20!

where the single coordinate isz5kx2vt. Here again,k is
the wave number andv the angular frequency, both con
stant; therefore, the periodicity is

U~z12p!5U~z!, V~z12p!5V~z!. ~21!

Suppose thata and the details ofF1 ,F2 are permanently
fixed. Then we consider the system~19!,~20!, with boundary
conditions~21!, to be an algorithm that yieldsk ~chosen to
be positive! as a function ofv and d; for uniqueness we
require a stable propagating solution. Thus we have

k5k~v,d!. ~22!

We now rewrite Eqs.~17! and ~18! in plane-wave form,
keeping Eq.~17! unchanged but, following Zykov@17#, we
multiply Eq. ~18! by an overall factor:

FV1aSK81
K
r D Gv81

V1aSK81
K
r D

V1adSK81
K
r D ~adK2v92dF2!

50. ~23!

The new system~17!,~23! is equally obtainable from sys
tem ~19!,~20! under the parameter substitution
qs.

a-

r

y

v→V1aSK81
K
r D , d→

V1aSK81
K
r D

V1adSK81
K
r D d. ~24!

The renormalizedv,d now depend onr throughK(r ), but
they nevertheless are just numerical parameters in the di
ential equations foru andv. Furthermore, the term2Vt in
r shows that the periodicity is still given by

u~r12p!5u~r!, v~r12p!5v~r!. ~25!

Therefore, algorithm~22! is still effective, yieldingK instead
of k. The desired renormalization condition is

K5kS V1aSK81
K
r D , V1aSK81

K
r D

V1adSK81
K
r D dD ,

~26!

where the functional form ofk is obtained from the plane
wave solutions in a range ofv,d. If these solutions are con
sidered known, then, fordÞ0, Eq.~26! gives the concentric-
wave solution in the form of an implicit condition forK.

Are there any special cases that are particularly simp
We note that the second substitution in Eq.~24! becomes an
identity, d→d, in three cases:

K81K/r50 or d50 or d51. ~27!

The first possibility is unphysical since it means th
K5const/r ; on the other hand, we see from Eq.~26! thatK
is independent ofr . Thus we haveK[0 ~there are no
waves!. The next case,d50 ~single diffusivity!, is really a
limiting one, where Eq.~38! must be used and Eq.~26! has to
be modified in order to involvee rather thand, as shown
further on. The last case,d51 ~equal diffusivities!, leads to
the simplest solution and will be discussed next.

III. SOLVING THE RENORMALIZATION CONDITION

A. Equal diffusivities

When d51 we haved→d in Eq. ~24!, so that algorithm
~22! and the renormalization condition~26! are reduced to
being one dimensional:

k5k~v!, ~28!

K5kS V1aSK81
K
r D D . ~29!

Equation~29! is readily solved in terms of low curvature an
unrestricted dispersion. Let us denote byc, kV5V/c, and
dk/dv the plane-wave quantities evaluated atv5V. By us-
ing the asymptotic expansion~8! we obtaing. Through order
1/r , Eq. ~29! reads

kV1
g

r
5kS V1

akV

r D . ~30!

With kV5k(V)5V/c, we have for the coefficient of 1/r
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g5
aV

c

dk

dv
. ~31!

If, in the plane wave,c is temporarily viewed as a functio
of v before being evaluated atv5V, and with use ofk
5v/c, we get from Eq.~31!

g5
aV

c2 S 12
V

c

dc

dv D . ~32!

The speed-curvature relation~9! then reads through orde
1/r

C~r !5c1S 211
V

c

dc

dv D a

r
. ~33!

B. Unequal nonzero diffusivities

To illustrate the two-dimensional procedure, we consi
Eq. ~26! at low curvature. Again we use Eq.~8! with

kV5k~V,d!, ~34!

a known constant obtained from the plane-wave algorith
Equation~26!, through order 1/r , now reads

kV1
g

r
5kS V1

akV

r
, d1

akV

Vr
d~12d! D . ~35!

For the coefficient of 1/r we find

g5akVS ]k

]v D
d

1
akV

V
d~12d!S ]k

]d D
v

. ~36!

Settingk5v/c and using Eq.~9!, we get the desired resu
through order 1/r :

C~r !5c1F211
V

c S ]c

]v D
d

1
d~12d!

c S ]c

]d D
v
G a

r
,

~37!

where all coefficients, includingc itself, are the plane-wave
versions evaluated at frequencyV and parameterd. The sub-
script d or v refers to the parameter that is being kept co
stant. The above result has Eq.~33! as a special case.

C. Single diffusivity

We finally go over to the single-diffusivity cased→0,
where we use Eq.~38! rather than Eq.~3!, so that we must
modify Eqs.~24! and ~26!. The procedure is the same as
the dÞ0 case, but here the independent plane-wave par
eters arev ande, giving rise to the plane-wave algorithm

k5k~v,e!. ~38!

@This ‘‘recycles’’ the notation of Eq.~22!; k is now a differ-
ent function.# The renormalization condition reads

K5kS V1aSK81
K
r D , FV1aSK81

K
r D G e

V D ,
~39!
r

.

-

m-

which is readily solved for the term of order 1/r . Using Eq.
~8!, we have for the coefficient of that term

g5akVS ]k

]v D
e

1
akVe

V S ]k

]e D
v

. ~40!

Through order 1/r , Eq. ~9! gives, with use ofk5v/c,

C~r !5c1F211
V

c S ]c

]v D
e

1
e

c S ]c

]e D
v
G a

r
, ~41!

where the ingredients are the plane-wave quantities m
sured atv5V. For e→0 and fixedF2 , Eq. ~41! coincides
formally with Eq. ~33!—a misleading resemblance. Indee
at any given nonzero frequency, the value ofe cannot in
general be made arbitrarily small, as a plausibility argum
will indicate. Let v be assumed fixed. Then, ase→0, the
ever-increasing pulse width causes each front and the pre
ing tail to approach one another. This will lower the fr
quency, in contradiction with our assumption. Neverthele
we can correctly takev→0 beforee→0, thus arriving at the
Zykov limit. Our numerical checks of Eq.~41! show some
interesting features that are probably related to the non
formity of this double limit, as we explain at the end of Se
IV.

IV. DISCUSSION

In the preceding section we have derived the spe
curvature formulas~33!, ~37!, and ~41!, valid for equal dif-
fusivities, unequal nonzero diffusivities, and single diffusi
ity respectively. A negativer will fit concave ~converging!
fronts. The coefficients in the formulas are taken from a
lution of the plane-wave problem. In particular, they invol
the plane-wave dispersion curve and the dependence o
plane-wave speed on a combination of the diffusivity ra
and the ratio of time constants. The following assumptio
have been made:~a! a generic two-dimensional uniform iso
tropic FitzHugh-Nagumo medium,~b! concentric waves with
a given frequencyV, and ~c! a sufficient distance from the
center. No specific assumptions are needed concerning
reactivity functions or the dispersion; nor are any assum
tions made about the wave being sparse or having a v
small ratio of time constants. The low-curvature assumpt
~c! is inherent to the phenomenon rather than to the ma
ematics. Since the excitation pulses at the center are to s
extent arbitrary wave forms in time, the wave will not eve
be unique unless measured at a sufficient distance from
center. How far is sufficient? We have no complete analy
answer, but Eqs.~15! and ~16! lead us to expect that, al
though the transients themselves may decay as slowly
o(1/r ), their effect on the wave speed is not more th
o(1/r 2), which is consistent with a speed formula that go
througho(1/r ).

Excellent confirmation of our results by numerical calc
lations is demonstrated in@20#. As far as their overlap with
the analytic work of Zykov and of Keener are concerned
can be summarized as follows~within the context of low
curvature!. Zykov @17# assumes a single diffusivity; he als
requires waves that are~i! in uniform rigid translational mo-
tion; ~ii ! of low frequencyV→0, which essentially implies
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7660 55M. WELLNER AND A. M. PERTSOV
solitary pulses, thereby avoiding dispersion problems;
~iii ! characterized by sharp fronts on the appropriate sc
i.e., the parametere is small. Under those conditions, and
the limitsV→0 ande→0 are taken in that order, our formul
~41! agrees with Zykov’s Eq.~1!. Here the distinction be-
tween translational and concentric appears to be unim
tant. In conclusion, we see no overlap between our res
and Eq.~1! except under Zykov’s limiting procedure. Keen
er’s speed-curvature equation@24,25# essentially retains only
one of Zykov’s restrictions, namely~iii !, the smallness ofe.
It is, however, too implicit for ready comparison with ou
formulas in their domain of validity. It reads~as adapted to
our notation!

C~r !5c~v f !2
a

r
, ~42!

where dispersive effects are taken into account by the t
c(v f). This represents the speed of a plane wave whose
quency is not necessarilyV, but is adjusted so that the var
able v ~nearly constant as we intersect the steep fronts
u! has the same valuev f as in the actual fronts under con
sideration. A comparison with our single-diffusivity formu
~41! in the casee→0 indicates that the termc(v f) has itself
an implicit first-order dependence on the curvature 1/r . The
same conclusion must apply to the other cases, covere
our Eqs.~33! and ~37!.

The formulas can be rewritten without derivatives, givi
rise to an alternative procedure for numerical verification a
at the same time making their appearance more suggesti
Keener’s result~42!, although not formally identical to it
We define a functionc(v), c(v,d), or c(v,e), which rep-
resents the speed of a plane wave in the cases correspo
to Eqs.~28!, ~22!, and~38!, respectively. We can then verif
directly ~through a Taylor-series expansion in 1/r ! that the
following formulas reproduce our results too(1/r ): Eq. ~33!,

C~r !5cS S 11
a

cr DV D2
a

r
; ~43!

Eq. ~37!,

C~r !5cS S 11
a

cr DV,F11
~12d!a

cr Gd D2
a

r
; ~44!

and Eq.~41!,

C~r !5cS S 11
a

cr DV,S 11
a

cr D e D2
a

r
. ~45!

In formulas~43!–~45! above, the right-hand sides are explic
expressions, provided we have determined the functional
pendence ofc for plane waves.
a

d
le,

r-
lts

m
e-

f

by

d
of

ing

e-

A comment still needs to be made about the somew
unconventional parametrization employed in Eq.~3!. Every-
thing done here could equally well be done, although in
more unwieldy fashion, with the termdF2(u,v) denoted by
eF2(u,v). The two-dimensional parameter space~v,d!
would expand to three dimensions~v,d,e! and the speed-
curvature relations in the version corresponding to Eqs.~33!,
~37!, and~41! would involve one more partial derivative. Fo
completeness we present the formulas obtained in that w
The functional dependence ofc is now c5c(v,d,e). Cor-
responding to Eq.~37!, we have the equivalent formula

C~r !5c1F211
V

c S ]c

]v D
d,e

1
d~12d!

c S ]c

]d D
v,e

1
e~12d!

c S ]c

]e D
v,d

G a

r
~46!

and, equivalently to Eq.~44! througho(1/r ),

C~r !5cS S 11
a

cr DV,F11
~12d!a

cr Gd,
F11

~12d!a

cr Ge D2
a

r
. ~47!

How well do our results agree with numerical data? In
separate study@20# we have tested two series of simulation
~a! the system~2!,~3! with d51 ~two equal diffusivities! and
~b! the system~2!,~38! ~single diffusivity!. We chose a pa-
rametrization and a set of frequencies that would confr
the eikonal relation with a high dispersion in at least a p
tion of the parameter range. We kepte very small, as is done
in the existing literature, in order to single out the effect
dispersion. In simulations~a!, we had good quantitative
agreement with Eq.~37!. Simulations~b!, intended as a tes
of the]c/]v term in Eq.~41!, actually demonstrated that th
]c/]e term could be fully comparable in size to the]c/]v
term, in spite of the smalle. ~This curious feature fits in with
the comments at the end of Sec. III.! The test therefore in-
volved both terms and again gave excellent agreement
tween theory and simulation. In all cases tested and wit
the accuracy of our figures, the actual curvature term
ceeded its Zykov limit, sometimes by over 100%.
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