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Numerical simulations show that, in excitable media, the standard eikonal equation describing the depen-
dence of a wave front’s local velocity on its curvature fails badly in the presence of significant dispersion
[Pertsovet al. Phys. Rev. Lett78, 2656 (1997)]. Here we derive a corrected eikonal equation, valid in an
unrestricted frequency range, which includes highly dispersive conditions. The derivation, which uses a finite-
renormalization technique, is applied to diffusion-reaction equations with generic reactivity functions and two
diffusivities of arbitrary ratio. In the important case of equal diffusivitieswe obtain at low curvature, the
following contribution to the speed:— 1+ (w/c)(dc/dw)](alr), where I¥ is the curvaturew is the fre-
guency, anctc=c(w) is the speed of a plane wave with that frequency. In the single-diffusivity case there is
a further contribution €/c)(dc/de)(alr), wheree is the ratio of time scales for diffusing and nondiffusing
variables;e is not restricted to a small range. Both cases yield excellent agreement with numerical simulations.
Our various formulas are compared with the classical results of ZyRmfizika 25, 888 (1980 [Biophysics
25, 906 (1980]) and of KeenefSIAM J. Appl. Math.46, 1039(1986]. [S1063-651X97)00706-X]|

PACS numbdps): 82.40.Ck

INTRODUCTION can be wrong by a factor of 2 or mof20]. In what follows
we apply a different analytic methadinite renormalization

Reaction-diffusion systems have been of interest for 421]) to the case of concentric circular wav€target pat-
long time because of the rich variety of nonlinear wave pheterns”). We obtain the speed-curvature relation for param-
nomena that they support. For example, excitable media suatter ranges not covered in earlier research: Dispersion is
as cardiac tissue and Belousov-Zhabotinsky reagents haveeated exactly and explicitly, anelneed not be restricted to
been intensively studied experimentally, analytically, anda small range. We shall be dealing with an asymptotic ex-
computationally with reference to wave propagation, withpansion in the curvature of the wave front. To first order in
particular attention to the local speed of the waves. Amonghe curvature our results contain, besides dfie term, sig-
the many factors that determine speed, the curvature of theificant additions not found in the previous literature. The
wave front plays a special role. One reason is that, with onlyanalytic aspects of our results are contained in E@8),

a moderate number of simplifying assumptions, we can maké&37), and(41) of the present paper; these formulas make use
definite predictions for the spedlin terms of the curvature of coefficients that must be obtained from plane-wave solu-

1/r. Another reason is that the local value ®fis related to  tions. When tested on computer simulations, even under con-
physiological and chemical observations more directly tharditions of high dispersion, they account accurately for the

many other parametefd—16). data; see the brief summary at the end of this article.

More than a decade ago, a formula for the propagation The model used here is an unbounded two-dimensional
speed of a diffusion-reaction wave in terms of its curvatureFitzHugh-Nagumo-like medium in which the propagating
was derived by Zyko\y17] in the context of the FitzHugh- variablesu,v obey the equations
Nagumo model with a single diffusion coefficient. His analy- )
sis assumed a low-frequency limit, i.e., isolated pulses, du—aVaut®,(u,v)=0, @)
thereby eliminating dispersion effects. Furthermore, the ratio
€ between the short- and long-time scales of the model was dw = a8V + 6P (u,0) =0, ©)

tSaI;eCr(la tgrbﬁn\éeg;n;siltlgéﬁgpgégge V\(';'ﬁaenagtlvalﬂ:gspwﬁﬁ SS;]nawhereCID 1 and®, are generic reactivity functiong;>0 and
P ' 9e. p 0 are constant parameters. In order thdét, be any de-

fronts. (We refer to these conditions as Zykov's limikor sired function, the form ofb, is considered to be specified

small curvature, his eikonal equation reads only after a value of§ is chosen. In the limiting casé—0

o (single diffusivity) we need to replace E@3) by

C=c——, D
r dw +€D,(u,v)=0, )

where« is the diffusivity of the medium and d/is the cur-  where it is important to note that in our treatment the param-
vature of the wave front. This equation has been widely useeéter € is not assumed to be small. The systéh and (3)

in the literature, for example, in the kinematic theory of spi-with =1 is the model of choice for the Belousov-
rals[18,19. It is important, however, to recognize that Eg. Zhabotinsky reactiori22,23, while system(2),(3") which

(1) can be far from satisfied in real life. In particular, under closely follows the original FitzHugh-Nagumo model, is ap-
conditions of high dispersion, the curvature term in E).  plied to electric impulses in the heart musd22]. For
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given é or €, we consider only such forms df; and®, as Y
will allow the existence of rigidly propagating periodic C(r) =C( -
plane-wave trains. @
Our method of derivation can be outlined as follows. Foryherec= C(%)=Q/k,, is the plane-wave speed. This article
definiteneSS we th|nk in terms Of OUtWard'traVeling Concen'is most|y Concerned W|th estimates f@.rWe do not address

tric waves whose chosen constant angular freque@ds  the convergence of expansions in powers of il Eq.(8) or
independent of space and time; a circle of constaénd  jn other equations further on.

constantv) will be referred to as an equipotential. At this

point we need to recall that periodic target patterns are not || THe METHOD OF EINITE RENORMALIZATION

unique, except in the far zone. Such waves are in general not

self-sustaining and we therefore postulate that a small but In this section we concentrate on the system of equations
finite disk, concentric with the origin, is periodically stimu- (2),(3). The alternative systert2),(3’) requires an entirely
lated at constant frequend€y in order to produce the waves. similar technique and will be briefly discussed at the end of
We further assume that, sufficiently far from the origin, theSec. Ill. We begin by changing variables in the wave equa-
wave form(in time and spadebecomes independent of the tions and subsequently pass rte-~. Before making that
stimulating wave form, except for its frequency. In the farapproximation, we must considerandv to depend some-

+0

1
r—z) ; 9

zoner — o, we define a comoving coordinate what onr as well as orp. Accordingly, let the new indepen-
dent coordinates be (p). We set
P:J K(r)dr—Qt, (4) u=u(p), v=v.(p), (10)

: : . . . . functions whose periodicity is
wherer is the radial coordinate andis the time. Equation P y

4 inyolves th_e indefinite ir_ltegral of an as yet undetermined U(p+2m=u,(p), v, (p+2m)=v.(p), (11
function X, which may be viewed as the local wave number.

For sufficiently larger we consider the variablasv to de-  as can be seen by adding one period tm Eq. (4). The
pend only onp; thus time is “frozen” and the comoving subscript indicates the residualdependence, negligible in
feature ofp is enforced. This constraint will fix the form of the region of interest, as we shall show by self-consistency.
K. The wave is now effectively mapped into a periodic planeTo the extent that the subscript may be ignored, Eij6)
wave; the mapping process, which we refer to as finite renorimply an identical temporal wave form everywhere along the
malization[21], systematizes and expands Zykov's original radius, apart from a location-dependent phase; in space, all
procedure[17]. Computing the plane-wave solution is a the recurring extrema of the wave are equal to each other and
separate and well-understood problem, not dealt with in theo their values in the corresponding plane wave. These equa-
present work(A notational remark: We make considerable tions also imply that coincident equipotentials wfand v

use of wave numberg, andC, and therefore curvature will travel together at all times.

be denoted by t/rather than byK, in contrast to much of Inserting Eqs(4) and(10) into Egs.(2) and(3), we have
existing practice. The case of inward-traveling waves will

be obtainable by changing the signrof L K > 2 1 ,
Oncek is known, we find the speed-curvature relation by | @\ &'+ 1| |u"F ek u"+a| dru+ T gu+2Kd,u
following in time the location of a given equipotential la-
beled byp=const. The time derivative of E¢4), —-®,=0, (12
K(r) ﬂ_gzo (5) Q+ad IC’-I—E) v’ +adK?"
dt ’ r
: . , 1 ,
gives the radial speed +ad| dfv+ T dv+2Kdv' | —6P,=0, (13
d Q
_ where
=4t~ xn) ©
, _du ,dv L dax
Forr—o we must have a plane wave corresponding to fre- U= o' U T ap K= dr - (14
quency(},
We express the residualdependence as an asymptotic se-
K(r)—kg=const. (7) ries in 1f, involving unspecified coefficientsu®),
v®, ..., which depend only omp:
Hence it is reasonable to consider an expansion
1 1
v (1 Ur(p) =Ua(p)+ — UM (p)+ Z uP(p)+ - - -,
IC(r):kQ+F+o r—z), (8) (15

1 1
. . =v. + @ + (2) o
where v is a constant coefficient. From E() we have vr(p)=v(p) r? (p) r2? (p)
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We also use Eq8) for K. We then find for the), terms in
Eq. (12):

1 1
afu+Faru+21C<9ru’=(function of p)xo| |,
(16)

and similarly for thed, terms in Eq.(13). This article ad-
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K
Q+a IC’+T

K
w—>Q+a(/C'+T, o— 5. (29

Q-i—aﬁ(/C’—i—?

The renormalizedv,é now depend o through/C(r), but
they nevertheless are just numerical parameters in the differ-
ential equations fou andv. Furthermore, the term-Qt in

dresses the first correction to plane waves, meaning that Eqﬁ'shows that the periodicity is still given by

(12) and(13) need to be enforced through order.1There-

fore, these equations reduce to the ordinary differential equa-

tions

K
K+ =
r

O+a u’+ak?u”"—d,=0, (17)

K
Q+ad IC’+T v'+adK?"—6d,=0, (18

in which the variabler has become a numerical parameter

and where we omit the subscriptthat occurs in Eq(15). In
what follows, the systen(17),(18) will be enforced exactly

u(p+2m)=u(p), v(p+2m)=v(p). (25

Therefore, algorithni22) is still effective, yieldingk instead
of k. The desired renormalization condition is

K
Q+a<l€’+T

K=kl Q+a IC’+T o,

Q+ad

K
K+ —
r

(26)

where the functional form ok is obtained from the plane-
wave solutions in a range @4,4. If these solutions are con-

at first, in order that the method of finite renormalization maysidered known, then, fof+0, Eg.(26) gives the concentric-

be applied to it.
Equations(17) and (18) are to be compared with the
plane-wave version of Eq$2) and(3), namely,

ol + ak?U"— D (U, V) =0, (19

oV + adk?V"— 50,(U,V) =0, (20
where the single coordinate iIs=kx— wt. Here againk is
the wave number and the angular frequency, both con-
stant; therefore, the periodicity is
Uz+2m)=Uz), WNz+2m)=)W2). (21
Suppose thatr and the details o ,,P, are permanently
fixed. Then we consider the systdf),(20), with boundary
conditions(21), to be an algorithm that yields (chosen to
be positive as a function ofw and &, for uniqueness we
require a stable propagating solution. Thus we have
k=k(w,$). (22
We now rewrite Eqs(17) and (18) in plane-wave form,
keeping Eq.(17) unchanged but, following Zyko{17], we
multiply Eq. (18) by an overall factor:

K
Q+a IC’+T

v+
Q+ad

(abK?v"— 6®,)

K
Q+a(l€’+7

K+ =
,
=0. (23

The new systen(l17),(23) is equally obtainable from sys-
tem (19),(20) under the parameter substitution

wave solution in the form of an implicit condition fd€.

Are there any special cases that are particularly simple?
We note that the second substitution in E24) becomes an
identity, 65— 46, in three cases:

K'+KIr=0 or 6=0 or §=1. (27)

The first possibility is unphysical since it means that
IC=constf; on the other hand, we see from E@6) that

is independent ofr. Thus we haveK=0 (there are no
waves. The next cased=0 (single diffusivity), is really a
limiting one, where Eq(3’) must be used and E6) has to
be modified in order to involve rather thans, as shown
further on. The last casé=1 (equal diffusivitieg, leads to
the simplest solution and will be discussed next.

[ll. SOLVING THE RENORMALIZATION CONDITION

A. Equal diffusivities

When =1 we haves— 4 in Eq. (24), so that algorithm
(22) and the renormalization conditiof26) are reduced to
being one dimensional:

k=k(w), (28)

K
K=kl Q+«a IC’+T . (29

Equation(29) is readily solved in terms of low curvature and
unrestricted dispersion. Let us denote diyko=Q/c, and
dk/dw the plane-wave quantities evaluateduat(). By us-
ing the asymptotic expansidB) we obtainy. Through order
1/r, Eqg.(29) reads

Y

kot =k (30)

k
Q+¥>.

With ka=k(Q)=Q/c, we have for the coefficient of 1/



af) dk

Y= de (31)

If, in the plane wavec is temporarily viewed as a function

of w before being evaluated abt=(), and with use ofk
=w/c, we get from Eq(31)

_aQ

Y=z

c (32

1 Q dc
Ccdo)

The speed-curvature relatiof®) then reads through order
1

C(r)=c+ —1+E% T

(33

Qdc)a

B. Unequal nonzero diffusivities

GENERALIZED EIKONAL EQUATION IN EXCITABLE MEDIA

7659

which is readily solved for the term of orderr1/Using Eq.
(8), we have for the coefficient of that term

— ok ok akge [ ok 40

Through order X/, Eq. (9) gives, with use ok=w/c,
cn=ct| -1+ 2 [ XL €[} |2 @
(ry=c <\ 78 E 25 ) T (41)

where the ingredients are the plane-wave quantities mea-
sured atw=). For e—0 and fixed®,, Eqg. (41) coincides
formally with Eq. (33)—a misleading resemblance. Indeed,
at any given nonzero frequency, the value eo€annot in
general be made arbitrarily small, as a plausibility argument
will indicate. Let w be assumed fixed. Then, &s-0, the
ever-increasing pulse width causes each front and the preced-

To illustrate the two-dimensional procedure, we consideling tajl to approach one another. This will lower the fre-

Eq. (26) at low curvature. Again we use E(B) with

kao=k(Q,9), (34

a known constant obtained from the plane-wave algorithm

Equation(26), through order ¥/, now reads

k k
Q+ar—0, 5+ 20

QOr

kﬂ+%=k 5(1—5)). (35)

For the coefficient of X/ we find

ak

6'(0(s

y=akq (36)

CI{kQ 5 1 5 8k
T 9G]
Settingk= w/c and using Eq(9), we get the desired result
through order ¥/

Jc a
a8l |7
(37)

where all coefficients, including itself, are the plane-wave
versions evaluated at frequenQyand parameted. The sub-

Q
Cc

C(r)=c+

&C) o8(1-9)
JR— +—
Jw s C

quency, in contradiction with our assumption. Nevertheless,
we can correctly take—0 beforee—0, thus arriving at the
Zykov limit. Our numerical checks of Eq41) show some
interesting features that are probably related to the nonuni-
formity of this double limit, as we explain at the end of Sec.
V.

IV. DISCUSSION

In the preceding section we have derived the speed-
curvature formulag33), (37), and(41), valid for equal dif-
fusivities, unequal nonzero diffusivities, and single diffusiv-
ity respectively. A negative will fit concave (converging
fronts. The coefficients in the formulas are taken from a so-
lution of the plane-wave problem. In particular, they involve
the plane-wave dispersion curve and the dependence of the
plane-wave speed on a combination of the diffusivity ratio
and the ratio of time constants. The following assumptions
have been madéa) a generic two-dimensional uniform iso-
tropic FitzHugh-Nagumo mediungh) concentric waves with
a given frequency), and(c) a sufficient distance from the
center. No specific assumptions are needed concerning the
reactivity functions or the dispersion; nor are any assump-
tions made about the wave being sparse or having a very

script 6 or o refers to the parameter that is being kept con-gmg|| ratio of time constants. The low-curvature assumption

stant. The above result has E3) as a special case.

C. Single diffusivity

We finally go over to the single-diffusivity casé—0,
where we use Eq.3’) rather than Eq(3), so that we must

(c) is inherent to the phenomenon rather than to the math-
ematics. Since the excitation pulses at the center are to some
extent arbitrary wave forms in time, the wave will not even
be unique unless measured at a sufficient distance from the
center. How far is sufficient? We have no complete analytic

modify Eqs.(24) and (26). The procedure is the same as in 2hSWer, but Egs(15) and (16) lead us to expect that, al-

the 6#0 case, but here the independent plane-wave para

eters arew ande, giving rise to the plane-wave algorithm

k=k(w,e). (38

[This “recycles” the notation of Eg(22); k is now a differ-
ent function] The renormalization condition reads

K €
K=kl Q+al L'+ — QO+a — 1,
r QO

3

g
K+ =
r

nihough the transients themselves may decay as slowly as

o(1/r), their effect on the wave speed is not more than
o(1/r?), which is consistent with a speed formula that goes
througho(1/r).

Excellent confirmation of our results by numerical calcu-
lations is demonstrated ii20]. As far as their overlap with
the analytic work of Zykov and of Keener are concerned, it
can be summarized as followsvithin the context of low
curvature. Zykov [17] assumes a single diffusivity; he also
requires waves that af@ in uniform rigid translational mo-
tion; (ii) of low frequency(}—0, which essentially implies
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solitary pulses, thereby avoiding dispersion problems; and A comment still needs to be made about the somewhat
(i) characterized by sharp fronts on the appropriate scalajnconventional parametrization employed in E). Every-

i.e., the parametet is small. Under those conditions, and if thing done here could equally well be done, although in a
the limits —0 ande—0 are taken in that order, our formula more unwieldy fashion, with the terd®®,(u,v) denoted by
(41) agrees with Zykov's Eq(1). Here the distinction be- e®,(u,v). The two-dimensional parameter space,d)
tween translational and concentric appears to be unimpowould expand to three dimensiori®,5,e) and the speed-
tant. In conclusion, we see no overlap between our resultsurvature relations in the version corresponding to E3(3),

and Eq.(1) except under Zykov’s limiting procedure. Keen- (37), and(41) would involve one more partial derivative. For
er's speed-curvature equatifi®d,25 essentially retains only completeness we present the formulas obtained in that way.
one of Zykov’s restrictions, namel§ii ), the smallness o¢.  The functional dependence ofis now c=c(w,5,€). Cor-

It is, however, too implicit for ready comparison with our responding to Eq(37), we have the equivalent formula
formulas in their domain of validity. It read@s adapted to

our notation o) ac) 5(1-6) (ac)
Ciry=c+|-1+—|—| +——|—=
o c \dw/ o a6 e
C(r=clv)- . (42 (15 (80) )
+ — — (46)
where dispersive effects are taken into account by the term c del 5 T
c(v¢). This represents the speed of a plane wave whose fre-
guency is not necessarily, but is adjusted so that the vari- and, equivalently to Eq44) througho(1/r),
ablev (nearly constant as we intersect the steep fronts of
u) has the same value; as in the actual fronts under con- a (1-9)a
sideration. A comparison with our single-diffusivity formula Cr)=c|| 1+ || 1+ —(—|4
(41) in the case=—0 indicates that the term(v;) has itself
an implicit first-order dependence on the curvature The (1-9a a
same conclusion must apply to the other cases, covered by 1+ T eor 6) T (47)

our Egs.(33) and (37).
The formulas can be rewritten without derivatives, giving  How well do our results agree with numerical data? In a

rise to an alternative procedure for numerical verification a”%eparate stud§20] we have tested two series of simulations:
at the same time making their appearance more suggestive 8{) the system2),(3) with 6=1 (two equal diffusivities and
Keener's result(42), although not formally identical to it. (b) the system(2),(3) (single diffusivity). We chose a pa-

We define a functiore(w), ¢(w,é), or c(w,€), which rep- 5 metrization and a set of frequencies that would confront
resents the speed of a plane wave in the cases correspondifig ejkonal relation with a high dispersion in at least a por-

to Egs.(28), (22), and(38), respectively. We can then verify {ion of the parameter range. We kapeery small, as is done
directly (through a Taylor-series expansion imjlthat the iy the existing literature, in order to single out the effect of
following formulas reproduce our resultsa§1/r): Eq. (33), dispersion. In simulationga), we had good quantitative

o agreement with Eq(37). Simulations(b), intended as a test
Q) - (43 of thedc/dw term in Eq.(41), actually demonstrated that the

o
1+ —
cr dclde term could be fully comparable in size to the/dw
Eq. (37) term, in spite of the smak. (This curious feature fits in with
' ' the comments at the end of Sec.)llThe test therefore in-
o volved both terms and again gave excellent agreement be-
5) - ?; (44  tween theory and simulation. In all cases tested and within
the accuracy of our figures, the actual curvature term ex-
and Eq.(4), ceeded its Zykov limit, sometimes by over 100%.

C(r)y=c

r

(1-9a
cr

1+

o
C(r)=c||1+—]|Q,
cr

C(r)=c

Q (1+ ﬁ) ) _ (45) ACKNOWLEDGMENTS
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